Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Infect Dis ; 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38109685

RESUMO

BACKGROUND: Altered mediators of airway tissue remodeling such as matrix metalloproteinases (MMPs) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may contribute to morbidity in coronavirus disease 2019 (COVID-19); however, the differential impact of SARS-CoV-2 variants of concern (VOCs) on MMPs is unknown. METHODS: Using both in vitro human airway cell culture model and in vivo transgenic mouse model of SARS-CoV-2 infection, we studied the differential effect of SARS-CoV-2 VOCs on expression of key MMPs and inflammatory mediators in airway cells and tissues. RESULTS: The most consistent findings with all SARS-CoV-2 variants in infected compared to uninfected human bronchial epithelial cell air-liquid interface cultures were the SARS-CoV-2-induced increases in MMP-12 and tissue inhibitor of MMPs. Infection with both SARS-CoV-2 wild type and SARS-CoV-2 Delta variant over 3 days postinfection (dpi) and with Beta variant over 7 dpi increased lung tissue levels of MMP-9 compared to uninfected mice. Overall, SARS-CoV-2 variants had differential dose-dependent impact on secretion of MMP-1, MMP-2, MMP-9, and MMP-12 that varied at the protein versus the gene level and in the early noninflammatory compared to late inflammatory phase of infection. CONCLUSIONS: We provide novel mechanistic insight that the differential impact of SARS-CoV-2 variants on severity of COVID-19 may partially be attributed to unique changes in MMPs.

2.
J Infect Dis ; 228(1): 59-63, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-36958371

RESUMO

No treatment exists for mitochondrial dysfunction, a contributor to end-organ disease in human immunodeficiency virus (HIV). The mitochondrial antioxidant mitoquinone mesylate (MitoQ) attenuates mitochondrial dysfunction in preclinical mouse models of various diseases but has not been used in HIV. We used a humanized murine model of chronic HIV infection and polymerase chain reaction to show that HIV-1-infected mice treated with antiretroviral therapy and MitoQ for 90 days had higher ratios of human and murine mitochondrial to nuclear DNA in end organs compared with HIV-1-infected mice on antiretroviral therapy. We offer translational evidence of MitoQ as treatment for mitochondrial dysfunction in HIV.


Assuntos
DNA Mitocondrial , Infecções por HIV , Humanos , Camundongos , Animais , Modelos Animais de Doenças , DNA Mitocondrial/genética , Infecções por HIV/tratamento farmacológico , Compostos Organofosforados , Antioxidantes , Ubiquinona , Mitocôndrias
4.
bioRxiv ; 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233569

RESUMO

To date, there is no effective oral antiviral against SARS-CoV-2 that is also anti-inflammatory. Herein, we show that the mitochondrial antioxidant mitoquinone/mitoquinol mesylate (Mito-MES), a dietary supplement, has potent antiviral activity against SARS-CoV-2 and its variants of concern in vitro and in vivo . Mito-MES had nanomolar in vitro antiviral potency against the Beta and Delta SARS-CoV-2 variants as well as the murine hepatitis virus (MHV-A59). Mito-MES given in SARS-CoV-2 infected K18-hACE2 mice through oral gavage reduced viral titer by nearly 4 log units relative to the vehicle group. We found in vitro that the antiviral effect of Mito-MES is attributable to its hydrophobic dTPP+ moiety and its combined effects scavenging reactive oxygen species (ROS), activating Nrf2 and increasing the host defense proteins TOM70 and MX1. Mito-MES was efficacious reducing increase in cleaved caspase-3 and inflammation induced by SARS-CoV2 infection both in lung epithelial cells and a transgenic mouse model of COVID-19. Mito-MES reduced production of IL-6 by SARS-CoV-2 infected epithelial cells through its antioxidant properties (Nrf2 agonist, coenzyme Q10 moiety) and the dTPP moiety. Given established safety of Mito-MES in humans, our results suggest that Mito-MES may represent a rapidly applicable therapeutic strategy that can be added in the therapeutic arsenal against COVID-19. Its potential long-term use by humans as diet supplement could help control the SARS-CoV-2 pandemic, especially in the setting of rapidly emerging SARS-CoV-2 variants that may compromise vaccine efficacy. One-Sentence Summary: Mitoquinone/mitoquinol mesylate has potent antiviral and anti-inflammatory activity in preclinical models of SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...